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Abstract-Detachment folds are defined by competent rock units and are cored by incompetent units deformed 
internally above a detachment horizon. We have developed two geometric models to constrain possible 
geometries and kinematic paths for ideal detachment folds. The models each independently relate fold geometry 
to shortening and to detachment depth. Model assumptions include plane-strain, constant competent bed- 
length, constant cross-sectional area, chevron fold geometry, and no bed-parallel shear outside the fold. 
Detachment depth is constant in one model but may vary in the other, thus allowing evaluation of the 
implications for fold geometry and kinematics of fixed vs variable detachment depth. 

Detachment folds formed above a detachment unit of constant thickness (constant detachment depth) must be 
initially symmetrical and cannot grow with fixed hinges (fixed arc-length) or a self-similar geometry. Detachment 
folds formed above a detachment unit of variable thickness (variable detachment depth) must also be initially 
symmetrical, but any one fold geometry can have a range of possible initial and final detachment depths. 
Kinematic paths for folds with fixed hinges (fixed arc-lengths), migrating hinges (variable arc-lengths), and self- 
similar geometries are all possible if detachment depth varies. The change in detachment depth during 
deformation can be determined using the variable detachment depth model if either initial or final detachment 
depth is known. 

The models demonstrate a wider range of variability in the geometry and kinematics of ideal detachment folds, 
particularly for the variable-depth model, than is the case for ideal fault-bend and fault-propagation folds. This 
variability limits the usefulness of simple geometric models for reconstructing the geometry of natural 
detachment folds. Balancing cross-sections over a sufficient area and evaluating strain may compensate for these 
limitations. 

INTRODUCTION 

Three major types of thrust-related folds have been 
recognized in fold-and-thrust belts (Jamison 1987) (Fig. 
1): fault-bend folds (Suppe 1983, Jamison 1987), fault- 
propagation folds (Jamison 1987, Mitra 1990, Suppe & 
Medwedeff 1990), and detachment (or dCcollement) 
folds (Dahlstrom 1969,1970,1990, Jamison 1987, Mitra 
& Namson 1989, Mitra 1992). Detailed descriptions 
have been given of the geometry and kinematics of fault- 
bend folds (Suppe 1983) and fault-propagation folds 
(Suppe & Medwedeff 1990, Mitra 1990). However, a 
comparable treatment of the geometry and kinematics 
of detachment folds is lacking in the literature to date. 
Here we present two geometric models for detachment 
folds that provide a framework for describing and con- 
straining their kinematic evolution. 

Alternating mechanically competent and incompe- 
tent rock units constitute the stratigraphy in most fold- 
and-thrust belts, and folds in relatively competent units 
with internally deformed weaker rock in their cores are 
common. We consider a detachment fold to be a fold in a 
relatively competent rock unit that is cored by internally 
deformed less competent rock that is separated from 
another competent unit by a detachment horizon or 

Fig. 1. Three major types of thrust-related folds in fold-and-thrust 
belts: fault-bend fold (FBF), fault-propagation fold (FPF), and de- 

tachment fold (DF). 

dCcollement. Detachment folds may be bounded by 
detachment horizons above, below, or both. Many de- 
tachment folds may be buckle folds, but many buckle 
folds are not detachment folds because they are not 
bounded by a detachment horizon. 

Geometries that we consider characteristic of detach- 
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ment folds are widespread in nature and have been 
recognized since the 19th century [see Willis & Willis 
(1934) for a review]. However, because of the lack of a 
clear and widely used definition of the term ‘detachment 
fold’, many folds with appropriate geometries have not 
been explicitly identified as detachment folds. Conse- 
quently, it is difficult to use published information to 
assess the full range of detachment fold geometries that 
exist in nature. Another difficulty in documenting the 
geometry and kinematics of detachment folds is that few 
geometric constraints can be imposed upon deforming 
incompetent rocks, thus requiring the use of simplifying 
assumptions about fold geometry and kinematics. 

Here, we describe quantitatively the implications of 
one fundamental assumption that is commonly made 
about detachment folds: that detachment depth remains 
constant during folding. We have chosen to focus on this 
assumption because its validity and quantitative impli- 
cations have not been as thoroughly explored as others 
and because variability of detachment depth due to 
thinning or thickening of the incompetent unit is quite 
plausible in detachment folds (Wiltschko & Chapple 
1977, Davis & Engelder 1985). 

We have developed two simple, theoretical, quanti- 
tative models for the geometry of detachment folds 
based on the law of conservation of volume (Goguel 
1962, Dahlstrom 1969, 1990, Mitra & Namson 1989). 
The first model is for detachment folds formed above a 
detachment unit of constant thickness (constant detach- 
ment depth model) and the second is for detachment 
folds formed above a detachment unit that changes 
thickness during folding (variable detachment depth 
model). 

We do not assume that these models directly rep- 
resent natural folds. Rather, they provide idealized 
standards against which natural folds can easily be 
compared. Such comparisons can be made using easily 
obtained geometric measurements, rather than values 
related to fold mechanics or dynamics that are far more 
difficult to constrain. The explicit assumptions incorpor- 
ated in the models isolate the variables that may influ- 
ence fold geometry and kinematics. 

CONSERVATION OF LINE-LENGTH AND AREA 
IN DETACHMENT FOLDS 

The concepts of conservation of bed length and cross- 
sectional area (e.g. Goguel 1962, Hossack 1979, Geiser 
1988) are widely known and applied to the balancing of 
structural cross-sections in foreland fold-and-thrust 
belts that have been deformed in plane-strain at rela- 
tively low temperatures and pressures (Woodward et al. 
1985,1989). Our detachment fold models, like those of 
Dahlstrom (1969, 1990), Jamison (1987) and Mitra & 
Namson (1989), rely fundamentally on these two con- 
cepts: (1) that competent units form parallel folds by 
flexural slip with cross-sectional bed length conserved 
during deformation, and (2) that cross-sectional area is 
conserved during deformation. 

DETACHMENT SURFACE COMPETENT UNIT 

LO- 

Fig. 2. Geometric basis for the fixed detachment depth model. As the 
incompetent unit is displaced and shortened, conservation of cross- 
sectional area requires that the displaced area (A,) equal the uplifted 
area (A‘). Conservation of line-length requires the contact between 
competent and incompetent units to retain its original length (L,, = 

~5,). See text for explanation of other variables. 

Conservation of bed length can be expressed as the 
‘line-length constraint’: 

s = Lf - L, (1) 

where S is shortening, Lf is the arc-length of a reference 
bed after folding and L1 is the horizontal component of 
the folded length of the reference bed (Fig. 2). 

Conservation of cross-sectional area can be expressed 
as ‘the area constraint’: 

SD, = Af (2) 

where D, is constant detachment depth and Af is the 
area of the incompetent unit uplifted above its unde- 
formed regional base level as a result of shortening (Fig. 

2). 
In an ideal detachment fold, bed length is conserved in 

the parallel-folded competent unit that defines the fold 
but not in the detached, incompetent unit that cores the 
fold. An incompetent unit, such as salt or shale, does not 
form parallel folds at the scale of the entire unit, but 
rather deforms internally by some combination of fold- 
ing, faulting and penetrative strain. Thus, these units 
tend to thicken during deformation so that unit length 
apparently decreases. Although line-length balancing is 
invalid for incompetent rocks, conservation of cross- 
sectional area is still assumed to apply. The contact 
between the competent unit and the adjacent incompe- 
tent unit defines the original length of that incompetent 
unit. Thus, equations (1) and (2) can be combined as ‘the 
equal area equation’: 

D, = A,I(L, - L,). (3) 

This relationship has been accepted and widely used in 
various forms with differing degrees of success since 
Chamberlin (1910) first used it to estimate detachment 
depths beneath Appalachian folds (Bucher 1933, 
Goguell962, Laubscher 1962, Dahlstrom 1969, Jamison 
1987, Mitra & Namson 1989, Thompson 1989, Mitra 
1992, Epard & Groshong 1993). Jamison (1987) used 
this relationship to establish the range of possible de- 
tachment fold geometries for different ratios of fold 
height to detachment depth. He also relaxed the con- 
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straint of constant bed-length in the competent unit to 
explore the geometric consequences of forelimb thick- 
ening and thinning. Mitra & Namson (1989) used the 
relationship to develop a model for symmetrical detach- 
ment folds. In their model, additional variations in fold 
geometry were attained by allowing vertical variations in 
bed-parallel shear. Epard & Groshong (1993) elimi- 
nated the assumption of constant bed-length in their use 
of the equal-area method to determine the required 
constant detachment depth beneath detachment folds. 
In each of the references above, the equal-area method 
has been used assuming a constant detachment depth. 
The models presented below explore the implications of 
this assumption and the consequences of relaxing it. 

THE MODELS 

We present two simple, idealized geometric models 
for detachment folds that are based on relating the line- 
length and area constraints. The only assumptions about 
mechanical behavior are that an upper competent unit 
deforms by parallel folding and a lower incompetent unit 
deforms internally. These mechanical concepts of com- 
petence vs incompetence, which are difficult to quantify 
practically, are represented in the models by their geo- 
metric equivalents, fixed vs variable thickness and 
length, which are easy to observe and measure. The 
models assume a simple triangular fold form common 
among natural detachment folds (e.g. Jamison 1987, 
Wallace &Hanks 1990, Homza 1992, Wallace 1993), but 
the equations presented below can be modified to 
accommodate more complicated geometries. An ideal 
parallel kink-fold geometry is used for the competent 
unit, with no thinning or thickening of limbs, and plane 
strain is assumed, so there is no change in cross-sectional 
area during shortening. The models consider only single 
folds and so apply only to those multi-fold systems in 
which adjacent detachment folds do not overlap. Bed- 
parallel shear is assumed to be absent outside of the 
detachment fold in both the competent and incompetent 
units and the detachment surface is assumed to parallel 
the regional datum defined by the fold (Fig. 2). Thus, the 
major geometric constraints for both models are simply 
that the competent unit must conserve line-length and 
the incompetent unit must conserve area. The sole 
difference between the two models is the assumption of 
constant depth in the first model but not in the second. 

Constant detachment depth model 

The first model represents detachment folds formed 
above a detachment horizon that maintains a constant 
depth (thickness) during folding (Fig. 2). The power of 
this model lies in the fact that both detachment depth 
and shortening can be determined independently given 
only the geometry of the detachment fold. This geom- 
etry can be expressed uniquely in terms of any three of 
the following variables, including at least one linear 

dimension: interlimb angle (y), backlimb dip (a), fore- 
limb dip (o), wavelength (W), and height (H) (where y 
and o ~180” and a <90”). The equations derived here 
are expressed in terms of y, a, and H, and all angles are 
expressed in degrees. 

Using the appropriate variables above, the area con- 
straint (equation 2) can be expressed as: 

D, = WHI2S. (4) 

Similarly, the line-length constraint (equation 1) can 
be expressed as: 

S=~(H2+X2)+~(H2+Y2)-W (5) 

where X and Y are the bases of two separate right 
triangles that together describe the form of the fold. The 
following relationships are also implicit from Fig. 2: 

W=X+Y (6) 

a + y + 0 = 180” (7) 

Y= Hcotw (8) 

X= Hcot a. (9 

Substituting equations (8) and (9) into equation (6), 
and expressing w  as (180 - y - a) yields: 

W = H{cot (180 - y - a) + cot a}. (10) 

To solve for the shortening that is geometrically 
required to uplift the area bounded by the triangular 
fold, substitute equations (8), (9) and (10) into equation 
(5), again expressing w  as (180 - y - a), and rearrange 
such that: 

S = d{H2 + (H cot a)“} 

+ d[H2 + {Hcot (180 - y - a)}2] 

-H{cot (180 - y - a) + cot a}. (11) 

To solve for the fixed detachment depth (D,) that is 
geometrically required to uplift the area bounded by the 
triangular fold, substitute equations (10) and (11) into 
equation (4) and rearrange such that: 

D, = H2{cot (180 - y - a) + cot a}/ 

2(b’{H2 + (H cot a)2} 

+ q[H2 + {Hcot (180 - y - a)}2] 

- H{cot (180 - y - a) + cot a}). (12) 

Notice that the detachment depth calculation is based 
on the area constraint (equation 2), whereas the short- 
ening calculation is based on the line-length constraint 
(equation l), and that each is expressed entirely in terms 
of fold geometry (i.e. y, a and H). Equations (lo), (11) 
and (12) can be solved in terms of the forelimb dip, w, 
simply by substituting w  for a (also note that the ex- 
pression (180 - y - a) is left in expanded form so it can 
easily be replaced by w, since o = (180 - y - a)). 
Solving equations (11) or (12) in terms of W rather than 
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Fig. 3. The constant detachment depth diagram. See text for discussion. Any point on the graph outside of the ‘no solution’ 
area defines one and only one triangular fold geometry. No trigonometric solutions exist for the shaded region. See Figs. 4 

and 5 for explanation of symbols and numbered kinematic paths. 

H, or in terms of a and o rather than y, requires different 
sequences of substitution that are not presented here. 
Equation (12) is analogous to equation (21) of Jamison 
(1987). 

In conclusion, if any three of the variables y, a, w, H, 
W, S, or D, are known, including at least one linear 
dimension, the others can be determined, specifying a 
unique fold geometry and size. 

The constant-depth diagram. The relationship be- 
tween shortening and fold geometry must be considered 
in order to determine possible kinematic paths for de- 
tachment folds. This relationship was considered quali- 
tatively by Dahlstrom (1990), but was not directly 
addressed by either Jamison (1987) or Mitra & Namson 
(1989). The fold geometries predicted by our model can 
be plotted as a function of shortening/constant detach- 
ment depth (S/D,) vs wavelength/height (W/H), with 
interlimb angle (y) and backlimb dip (a) varying accord- 
ing to equations (11) and (12) (Fig. 3). Every point on 
this ‘constant-depth diagram’ describes one and only 
one fold form, although the size of each form varies as a 
function of shortening and detachment depth. Length 
ratios are used on this plot instead of absolute lengths in 
order to represent the large number of variables on a 
single plot for fold geometry, which can be used to trace 
kinematic paths. 

Since the kinematic evolution of a fold is controlled by 
increasing shortening, this plot constrains the possible 
kinematic paths that an ideal detachment fold may 
follow. The kinematic path must be continuous from the 
inception to the final form of the fold. Since the detach- 

ment depth is held constant, any fold must follow a path 
with an increasing value of S/D, as shortening increases. 

Implications of the constant-depth diagram for the 
kinematic evolution of ideal detachment folds. The lower 
boundary of the field of possible fold geometries in Fig. 3 
is the ‘line of symmetrical folds’, which is asymptotic to 
S/D, = 0. In order for the graphical plot of successive 
geometries of an evolving fold to proceed from the S/D, 
= 0 line to the line of symmetrical folds, the fold must 
either: (1) nucleate at W/H = CQ; or (2) nucleate with a 
geometry corresponding to the upper boundary of a 
finite field for which our equations have no solutions 
(shaded area on Fig. 3). Thus, natural detachment folds 
could: (1) nucleate with a very high W/H and initially 
symmetrical geometries; or (2) nucleate after a finite 
amount of shortening was accommodated by mechan- 
isms other than folding (see Biot 1961, Dixon & Tirrul 
1991 and Abbassi & Mancktelow 1992 for additional 
discussion and references about fold nucleation). In 
either case, the relative position of the line of symmetri- 
cal folds at the base of the range of permissible shapes 
implies that the initial form of an ideal detachment fold is 
symmetrical. 

Folds may become asymmetrical with increasing 
shortening depending on whether or not the kinematic 
path follows the line of symmetrical folds. If detachment 
depth is fixed, equations (11) and (12) require that at 
least two limb angles change with increasing shortening 
(Figs. 3 and 4). Thus, growth of a self-similar, fixed limb- 
dip geometry is not possible with a fixed detachment 
depth (Figs. 3 and 5a). If detachment depth is fixed, the 
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Fig. 4. Kinematic evolutions of fold geometries compatible with the 
constant detachment depth model. Progressively thicker lines indicate 
successive steps in fold evolution with increasing shortening above a 
constant detachment depth. Numbered lines on Fig. 3 represent the 
kinematic paths for each fold sequence, and symbols mark points 
describing the geometry of the successive steps in the evolution of each 

fold. 

equations also require an increase in total limb length as 
shortening increases so that fixed arc-length buckle folds 
are not possible (Dahlstrom 1990) (Fig. 5b). 

Variable detachment depth model 

The variable detachment depth model (Fig. 6) permits 
a wider range of geometries and kinematic paths than 
does the constant depth model. In this model, the fold 
area depends simply on fold geometry and is indepen- 
dent of detachment depth. We define D, as the unde- 
formed thickness of the incompetent unit (original 
depth), Df as the final thickness of the incompetent unit 
beneath the fold (final depth), and AD as the variation in 
incompetent unit thickness during deformation (Fig. 6) 
such that: 

AD=D,-D, 

Ao + AD<, = 4 + AD,> + Am 

A, = SD, 

Aa, = W(4) 

Af = WHl2 

and the ‘area differential’ 

A AD = W(AD). 

These equations can be combined to yield: 

(13) 

(14) 

(15) 

(161 

(17) 

(18) 
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Fig. 5. Successive fold geometries in sequences 5 and 6 are systemati- 
cally related, but are kinematically impossible within the bounds of the 
constant detachment depth model because they require variation in 
detachment depth. Progressively thicker lines indicate successive steps 
in fold evolution with increasing shortening. Sequence 5 plots as a 

point on Fig. 3, whereas sequence 6 is omitted for clarity. 

: 

Fig. 6. Geometric basis for the variable detachment depth model. As 
the incompetent unit is displaced and shortened, conservation of cross- 
sectional area requires that the displaced area (A,) equal the uplifted 
area (A,) plus the area differential (AAD). Conservation of line-length 
requires the contact between competent and incompetent units to 
retain its original length (I,, = Lf). See text for explanation of other 

variables. 

or: 

Df = DOS/W + D, - HI2 (19) 

OfID, = SIW + 1 - H/2D,. (20) 

Given a specific fold geometry, either the final detach- 
ment depth beneath the fold (Of) or the original detach- 
ment depth (DO) can be determined if the other is 
known. D, is invariant, since it represents the unde- 
formed thickness of the incompetent unit. We assume 
D, is known, as would be the case where the unde- 
formed stratigraphic thickness of the incompetent unit 
can be determined outside the fold. However, we stress 
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that if Df is known, D, can be determined by modifying 
the equations. 

The area differential. The area differential (ALo in 
Fig. 6) represents the difference between the displaced 
area (A, = SD,) and the cross-sectional area of the fold 
(A,). The area differential can be either positive or 
negative depending on whether the fold area is smaller 
or larger, respectively, than the displaced area. A posi- 
tive area differential indicates a final detachment depth 
that is greater than the original detachment depth, 
perhaps due to layer-parallel thickening in the incompe- 
tent unit (e.g. Fig. 6). Such structural thickening be- 
neath folds is a common feature in physical models of 
folds (e.g. Dixon & Tirrul 1991) and in natural detach- 
ment folds (e.g. Wallace 1993, Homza 1992, 1993). A 
negative area differential indicates an original depth that 
is greater than the final depth, perhaps due to vertical 
transport of excess material from directly beneath the 
fold into the fold. Such thinning during folding is also a 
common feature both in physical models of folds and in 
natural folds, especially in the early stages of fixed arc- 
length folding when W/H is large (Wiltschko & Chapple 
1977, Dixon & Tirru11991, Dixon & Liu 1992). In order 
to establish a quantitative relationship between the 
undeformed and shortened states, it is necessary to 
define boundaries on the area within which the incompe- 
tent unit may move during deformation. In this model, 
material is arbitrarily assumed not to be transported 
through the lines perpendicular to the detachment sur- 
face and connected to the synformal hinges bounding 
the fold, although the thickness of the incompetent unit 
directly beneath the synformal hinges may vary. In other 
words, all of the material in and beneath the antiform is 
assumed to have originated in the area bounded by the 
synformal hinges and the geometry outside of the syn- 
forms is not considered. The regional datum as defined 
by the synformal hinges at the base of the competent unit 
is also assumed to remain parallel to the detachment 
surface. 

The variable-depth diagram. Detachment folds 
formed above an incompetent layer that changed thick- 
ness during deformation, such that D, # D,, can be 
plotted on a variable-depth diagram (Fig. 7). The dia- 
gram consists of two linked graphs: the upper graph is 
analogous to the constant-depth diagram since it is used 
to plot fold geometries and every point on the graph 
represents one and only one fold form; the lower graph 
has the same X-axis as the upper graph and is used to 
determine the variation in detachment depth. As with 
the constant-depth plot, length ratios are used on the 
upper graph in order to allow the large number of 
variables to be shown on a single plot for fold geometry. 
For any fold geometry, only one linear dimension is 
needed to calculate the others using the equations 
above. The lower graph is required to accommodate the 
additional variable, detachment depth. It is the plot of a 
straight line, the ‘depth line’, for which the slope is one 
and (1 - H/2D,) is the Y-intercept (equation 20). The 

6 

s/w 
0 1 2 3 4 5 6 

1~,~~1~~~~1,~~.(.~~~1~,~~ 
0 1 2 3 4 5 6 

s/w 

Fig. 7. The variable detachment depth diagram. See text for dis- 
cussion. DflD, = depth ratio. Any point on the upper graph outside of 
the ‘no solution’ area defines one and only one triangular fold geom- 
etry. Detachment depth is determined using D,lD,, which is the 
Y-value of the point of intersection of S/W and the appropriate depth 

line. The fold in Fig. 14 is plotted on this diagram. 

position of this line on the Y-axis is determined, there- 
fore, by H and D,. However, since D, remains constant, 
any shift of the depth line on the Y-axis along a kinema- 
tic path is a function only of variation in H (Figs. 8 and 

9). 
Determining the detachment depth for a given de- 

tachment fold with a known D, requires several steps 
(Figs. 8 and 9). First, the fold geometry must be plotted 
as a point on the upper graph. Second, a depth line with 
the appropriate Y-intercept is constructed on the lower 
graph. Finally, a vertical line, representing S/W of the 
fold, is drawn to link the point defining the geometry 
with the depth line. The S/W line and the depth line 
intersect on the lower graph at a point which defines the 
D,l D, value (Y-value) for the given geometry and given 
D,. Thus, Drcan easily be calculated since D, and Of/D, 
are now both known. It is important to note that mul- 
tiple depth lines may be needed in order to trace the 
geometric evolution of a fold along a particular kinema- 
tic path since the evolution may involve changes in the 
value of H (e.g. Fig. 9). 

Implications of the variable-depth diagram for the 
kinematic evolution of ideal detachment folds. A fold 
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evolves incrementally as shortening increases. Its kine- 
matic path must be a continuous curve for which values 
of either S/H or S/W increase. Either ratio may de- 
crease. If both ratios decrease together, however, then 
shortening decreases, which is not a viable kinematic 
path. All other paths are considered geometrically 
viable, although some may be geologically implausible. 
The line of symmetrical folds on this diagram is asymp- 
totic to S/H = 0, suggesting identical geometric impli- 
cations to those described above for fold nucleation with 
a fixed detachment depth. An infinite array of geometri- 
cally possible kinematic paths can be plotted on the 
variable-depth diagram. Examples of kinematic paths 
for fixed arc-length (Figs. 8 and 9), constant-depth (Figs. 
10a and ll), and self-similar (Figs. lob and 11) folds are 
shown here to illustrate specific implications of variable 
detachment depth for fold evolution. 

Fixed arc-length growth requires a path of first de- 
creasing, then increasing depth, as has been noted by 
Wiltschko & Chapple (1977) and Dahlstrom (1990) 
(Figs. 8 and 9). On the variable-depth diagram, a kine- 
matic path for geometries with a constant detachment 
depth requires that the S/W line and the depth lines 
intersect at DJD, = 1 for every increment of growth 
(Figs. 10a and 11). Self-similar geometric growth re- 
quires a decrease in detachment depth as shortening 
increases in order for the geometry to balance (Figs. lob 
and 11). 

THE KINEMATICS OF DETACHMENT FOLDS: 
FIXED OR MIGRATING HINGES? 

Empirical observations and mechanical consider- 
ations suggest that buckle folds in a competent layer 
bounded by incompetent material nucleate with an arc 
length that is a function of rheology and competent layer 
thickness, and retain a constant arc length and hence 
fixed hinges as shortening increases and the fold grows 
(de Sitter 1956, Biot 1961, Currie ef al. 1962, Ramberg 
1964, Ramsay 1967, 1974, Johnson 1977, Abassi & 
Mancktelow 1992, Fischer et al. 1992, Mancktelow & 
Abassi 1992) (Fig. 12a). Mitchell & Woodward (1988) 
assumed that detachment folds form by this fixed arc- 
length buckling mechanism, and Thompson (1989)) 
Fischer et al. (1992), Rowan & Kligfield (1992)) and Ho11 
& Anastasio (1993) provide evidence for fixing-hinge 
growth of folds that could be interpreted as detachment 
folds. We have observed multiple detachment folds 
whose distribution of strain indicates that hinges were 
fixed during most or all of folding (e.g. Homza 1993). An 
important implication of fixed-hinge fold growth is that 
fold limbs rotate during fold growth, as observed in 
many natural folds (e.g. Hardy & Poblet 1994), in 
contrast with the fixed limb orientations of ideal fault- 
bend or fault-propagation folds (Suppe 1983, Suppe & 
Medwedeff 1990, Mitra 1990). 

Dahlstrom (1990) pointed out that fixed arc-length 
folding is incompatible with conservation of cross- 

sectional area for a constant detachment depth, which 
requires a linear relationship between shortening and 
uplifted cross-sectional area (equation 2) (Fig. 13). In 
contrast, Wiltschko & Chapple (1977) documented a 
non-linear relationship between uplifted area and short- 
ening for symmetrical fixed arc-length folds (Figs. 8a, 9 
and 13). The incompatibility between constant detach- 
ment depth and fixed arc-length folding is particularly 
obvious for fixed arc-length folds with interlimb angles 
less than a critical value, below which uplifted area 
decreases with increasing shortening (Wiltschko & 
Chapple 1977) (Fig. 13). Wiltschko & Chapple (1977) 
resolved this problem by assuming that incompetent 
material moves from synforms to antiforms as uplifted 
area initially increases, then flows out of the antiforms as 
area decreases with increasing shortening, resulting in a 
change in detachment depth with fold evolution. The 
present models quantitatively illustrate the fundamental 
incompatibility of the assumption of constant detach- 
ment depth with the growth of fixed arc-length folds. 
They show that detachment depth must change as a fixed 
arc-length fold evolves (Figs. 5b and S), and allow the 
required changes in detachment depth to be determined 
(equation 19 and Figs. 8 and 9). 

In order for a detachment fold to grow with a constant 
detachment depth, the uplifted area in its core must 
increase linearly as shortening increases (Fig. 13). This 
requires an increase in length of one or more fold limbs, 
which in turn requires hinge migration (Fig. 12b). 
Growth of folds by hinge migration has been docu- 
mented for kink bands (Weiss 1968, Stewart & Alvarez 
1991), and has been used to model fault-bend folds 
(Suppe 1983) and fault-propagation folds (Suppe & 
Medwedeff 1990). Dahlstrom (1990) and Butler (1992) 
concluded that hinge migration is likely during growth of 
detachment folds and some Alpine fold nappes, respect- 
ively. The geometric models of detachment folds of 
Jamison (1987) and Mitra & Namson (1989) both 
assume a fixed detachment depth and fold growth by 
hinge migration. 

Thus, some evidence argues for fixed-hinge growth of 
detachment folds whereas geometric models assuming 
constant detachment depth require the growth of de- 
tachment folds by hinge migration. Whether any or all 
natural detachment folds grow with fixed hinges remains 
an important but unresolved question. Since our first 
model is based on the assumption of constant detach- 
ment depth, it requires hinge migration for the growth of 
detachment folds. However, the variable detachment 
depth model shows that fixed arc-length folds, as well as 
other folds with geologically reasonable kinematic paths 
that are incompatible with fixed-depth models, may 
evolve above a detachment unit that varies in thickness 
during deformation (Figs. 8 and lob). The observation 
that detachment depth does in fact commonly vary in 
natural detachment folds (e.g. Wiltschko & Chapple 
1977, Davis & Engelder 1985, Wallace 1993, Homza & 
Wallace unpublished field observations) suggests that 
the variable-depth model may have useful application to 
natural detachment folds. 
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a) Fixed arc-length 

competent layer 
I 

b) Hinge-migration 

I competent layer I 

Fig. 12. Diagram showing the fundamental difference in kinematics 
between fixed arc-length folding (a), in which the arc-length remains 
constant and hinges are fixed throughout the evolution of the fold, and 
folding by hinge-migration (b), in which arc-length increases. AL = 

arc length. 

Af 

Fig. 13. Plot of shortening (5’) vs uplifted cross-sectional area (A,) for 
fold sequences in Figs. 8 and 10. Any fold sequence with a constant 
detachment depth D, follows a straight line with slope DC. Other fold 

sequences follow non-linear curves. 

a =26O 
y=80° 
Lo=209m 

S=62m 

Do=1 07m 

0 100 

SlOE - NlOW 

Fig. 14. Simplified cross-section of the Salisbury Creek anticline 
showing detachment depth solutions calculated using both the conven- 
tional equal-area technique (equation 2) and the variable-depth tech- 
nique (equation 19). The fold axis is horizontal and the plane of section 
is vertical. Calculations use the enveloping surface shown. DC = 
detachment depth calculated from equations (2) or (12), Df = detach- 
ment depth calculated from equation (19), Do = undeformed thick- 
ness of Kayak Shale determined from a panel of Lisburne Limestone 
that parallels the detachment surface. D, = depth to detachment 
projected into the line of section. Other variables as illustrated in Figs. 

2 and 6. The fold geometry is plotted on Fig. 7. 

APPLICATION OF THE VARIABLE 
DETACHMENT DEPTH METHOD TO A 

NATURAL DETACHMENT FOLD 

The Salisbury Creek anticline in the northeastern 
Brooks Range of Alaska is defined by several hundred 
meters of the competent Mississippian to Pennsylvanian 
Lisburne Limestone and is cored by the internally de- 
formed, incompetent Mississippian Kayak Shale (Fig. 
14). Stratigraphically beneath the Kayak Shale, the 
Mississippian Kekiktuk Conglomerate is deformed in 
folds with much longer wavelength and larger interlimb 
angle, requiring a detachment to exist in the Kayak 
Shale (Namson &Wallace 1986, Wallace &Hanks 1990, 
Homza 1993, Wallace 1993). 

If constant line-length, plane strain, and chevron 
geometry (shown as an enveloping surface on Fig. 14) 
are assumed, then the geometry of the Salisbury Creek 
anticline requires 62 m of shortening (the fold is plotted 
on Fig. 7). If constant detachment depth is also assumed, 
then equations (3) and (12) require a detachment depth 
(DC) of 75 m (Fig. 14). If constant depth is not assumed 
and the undeformed thickness (Do) of the Kayak Shale 
is used in equation (19), then the final thickness (Of) 
required for the fold to balance is 121 m. The observed 
detachment surface projects into the plane of section at 
115 m (D,,) beneath the southern syncline, and thus 
agrees well with the depth calculated if constant detach- 
ment depth is not assumed. 

Since the variable detachment depth method incor- 
porates an additional observational constraint, the 
undeformed thickness (Do), it is less sensitive to obser- 
vational uncertainties than is the constant depth 
method. For example, if the detailed geometry of the 
Salisbury Creek anticline, where S = 65 m and A, = 3809 
m*, is used in the calculations instead of the triangular 
enveloping surface, then DC = 59 m and D, = 128 m. 
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Thus, using the enveloping surface as an approximation 
creates an error of 16 m in the constant-depth calcu- 
lation, but it creates an error of only 7 m in the variable- 
depth calculation. This difference in sensitivity holds 
true for other variables as well. 

Since the variable-depth solution incorporates the 
additional data (DJ and more closely matches the 
projected depth, it is considered more reasonable than 
the constant-depth solution. Hence, the kinematic path 
followed by the Salisbury Creek anticline is not re- 
stricted by the requirement of constant detachment 
depth and could have evolved geometrically by either 
fixed- or migrating-hinge kinematics. The area observed 
beneath the fold (W x D, = 147 m x 115 m = 16,905 m’) 
is less than the area calculated using the variable-depth 
model (W x D, = 147 m x 128 m = 18,816 m2) by - 1911 
m2. This discrepancy suggests that a significant amount 
of incompetent rock could have been removed from the 
fold. Strong solution cleavage and stylolitization in the 
Kayak Shale in the core of the anticline support this 
suggestion. 

Shortening (thickening) of the incompetent unit out- 
side of the fold presumably is accommodated in the 
competent unit by folding, which would also result in an 
overestimate of thickening below the fold using the 
variable-depth model. However, thickening in the 
incompetent unit outside of the fold is not accounted for 
by the variable-depth model, since an assumption of the 
model is that no incompetent material flows through the 
synclinal hinges bounding the detachment fold. The 
difficulty in determining the distance over which fold 
shortening has influenced incompetent unit thickness 
and how changes in incompetent unit thickness are 
partitioned between adjacent folds is a fundamental 
problem with this or any geometric model for detach- 
ment folds. 

Qualitative analysis of the distribution of strain in the 
Salisbury Creek anticline provides constraints on its 
kinematic evolution. The anticlinal hinge is extremely 
strained and includes many minor contractional faults 
with a variety of orientations and offsets, abundant 
centimeter-scale folds, well-developed calcite-filled 
veins that parallel and cross-cut bedding, tectonic brec- 
ciation, solution cleavage, and stylolitization. The syn- 
clines bounding the forelimb and the backlimb are 
similarly very strained. Little solution cleavage and only 
very minor stylolitization are apparent in the backlimb. 
Centimeter-thick chert beds at the base of the Lisburne 
Limestone record only a few poorly developed veins and 
no tectonic brecciation in the backlimb. The only signifi- 
cant deformation in the backlimb is recorded by bed- 
parallel slickensides indicating flexural slip and a late- 
stage thrust fault with about 10 m of displacement. 
Forelimb deformation includes tectonically brecciated 
and boundinaged chert beds, minor cleavage, bed- 
parallel veins of stretched calcite fibers, and stretched 
bed-parallel slickenfibers indicating north-over-south 
flexural slip. 

There are no structures reflecting hinge migration 
through the backlimb, nor are there any definitive 

examples of such structures in the forelimb. The inten- 
sity of tectonic brecciation and interbed shear in the 
forelimb permits the possibility that either adjacent 
hinge migrated through the forelimb during the early 
stages of fold growth. However, we prefer a fixed-hinge 
interpretation because the contractional faults, cross- 
cutting veins, minor folds and intense solution cleavage 
that characterize the adjacent fold hinges are lacking in 
the forelimb. Consequently, we suggest that the Salis- 
bury Creek anticline formed by fixed-hinge buckling, 
with structural thickening of the Kayak Shale, volume 
loss in the Kayak Shale due to fluid migration out of the 
core of the fold, and late-stage thrust faulting in the 
backlimb. 

DISCUSSION 

incorporation of different assumptions into the 
variable-depth model 

The example illustrates that the variable-depth model 
can be applied successfully to a natural detachment fold 
and, at least for that fold, yields a better approximation 
than the constant-depth model. A variety of modifi- 
cations can be made to the variable-depth model to 
accommodate departures of natural folds from the 
assumptions incorporated in the model. For instance, 
the example illustrates a problem with the assumption of 
constant cross-sectional area of the incompetent unit 
within the synforms bounding the fold. In its present 
form, the model does not account for changes in cross- 
sectional area of the incompetent unit due to flow 
through synformal hinges, loss or gain of rock volume, 
and/or transport of rock into or out of the plane of 
section. The effect of observed area changes can easily 
be accommodated in the model by making appropriate 
corrections to the area differential (A,,), provided that 
the area changes affect only the incompetent unit and do 
so uniformly. Applying such corrections will yield a 
corrected value of the change in thickness (AD), 
although determining accurate values of corrections for 
natural folds may be difficult in practice. The need for 
corrections is eliminated if both original (D,) and final 
(Of) detachment depth are known, allowing the change 
in thickness (AD), and consequent loss or gain of area, 
to be determined directly. Non-uniform changes in the 
area of the incompetent unit and uniform or non- 
uniform changes in the length of the competent unit 
would necessitate more complicated corrections, re- 
quiring a detailed knowledge of the amount, distri- 
bution, and timing (relative to folding) of any area or 
length changes. 

Although only simple triangular fold geometries are 
considered in the model, the same approach could be 
applied to other fold geometries, although the com- 
plexity of the problem will increase as the number of 
possible hinges is increased and if non-linear limbs are 
considered. The model could be modified to accommo- 
date vertical differences in layer-parallel shear in the 
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Table 1. Table comparing the geometric and kinematic characteristics of ideal fault-bend folds, fault-propagation folds, and detachment folds 
with fixed or migrating hinges 

Fault-bend 
fold (1,2) 

Fault-propagation 
fold (1,3) 

Detachment fold 
(migrating hinges) (1,4) 

Detachment fold 
(fixed hinges) (4) 

Mechanical stratigraphy Competent 

Rigid footwall ramp Yes 

Detachment depth Constant 

Competent 

Yes 

Constant 

Competent over Competent over 
incompetent incompetent 

No No 

Constant Variable 
or variable 
(Thickness of incompetent unit below regional datum) 

Fixed vs migrating Fixed in HW ramp Migrating except Migrating Fixed 
hinges Migrating over FW in anticlinal 

ramp core 

Fixed vs rotating limbs Fixed Fixed Fixed or rotating Rotating 
Forelimb dip O-60” (I), 6&180” (II)* O-180” O-180” &180” 
Backlimb dip O-30 O-60” O-180” O-180” 

Kinematic paths 
Arc length Increasing Increasing Increasingi Fixed 
Wavelength Increasing Increasing Increasing or decreasing+ Decreasing 
Height Increasing to Increasing Increasing or Increasing then decreasing 

a maximum Increasing then decreasing? 

References: (1) Jamison (1987), (2) Suppe (1983), (3) Suppe & Medwedeff (1990), (4) this paper. 
Notes: Constant bed thickness (parallel folding) assumed in competent units. 
Ramp assumed to step up from bed-parallel detachment (dCcollement) for FBF and FPF. 
*(I): mode I FBF’s, (II): mode II FBF’s. 
-tGeometricaIly unconstrained; the most geologically plausible paths are noted. 

incompetent unit by using the shear profile to define the 
trailing surface of the deformed area of the incompetent 
unit. This would enable a correct change in thickness 
(AD) to be determined, rather than the incorrect value 
that would be determined if the shortening value indi- 
cated by the fold shape was used assuming no vertical 
differences in layer parallel shear in the incompetent 
unit. The model is not affected by vertical variations in 
layer-parallel shear in the competent unit since it 
addresses only the geometry of the interface between 
the competent and incompetent units. 

Comparison of ideal detachment folds with ideal fault- 
bend and fault-propagation folds 

Our models provide a quantitative basis for the con- 
clusion that ideal detachment folds are intrinsically less 
constrained, and hence less predictable, than ideal fault- 
bend or fault-propagation folds (Fig. 1). Similar re- 
lationships among fold geometry (width, height, back- 
limb dip, forelimb dip), shortening and detachment 
depth can be established for all three fold types. How- 
ever, a greater range of geometries for detachment folds 
is possible within the common assumptions of plane 
strain and constant cross-sectional area, detachment 
depth and competent bed length and thickness (Jamison 
1987) (Table 1). This reflects the fact that both backlimb 
and forelimb dip are dependent on ramp angle in ideal 
fault-bend and fault-propagation folds (Suppe 1983, 
Suppe & Medwedeff 1990, Mitra 1990, Jamison 1987), 
whereas the mobility of the incompetent unit in detach- 
ment folds requires no such linkage between backlimb 
and forelimb dip. If the assumption of constant detach- 

ment depth is relaxed for detachment folds, as in our 
variable-depth model, an even wider range of values of 
original and final detachment depth are possible for each 
fold geometry. 

The contrast is even more apparent in the kinematic 
evolution of ideal fault-bend and fault-propagation folds 
vs that of ideal detachment folds (Table 1). Detachment 
depth and interlimb angle are fixed during growth of 
ideal fault-bend and fault-propagation folds as long as it 
is assumed that bed thickness remains constant and no 
vertical gradient exists in layer-parallel shear (Suppe 
1983, Suppe & Medwedeff 1990, Mitra 1990, 1992, 
Jamison 1987). These constraints exist because the ideal 
fold geometry is controlled by fixed, competent footwall 
ramps. The mobility of the incompetent unit in an ideal 
detachment fold allows a fundamentally different kine- 
matic evolution from these ‘rigid-ramp’ folds. Variation 
of backlimb and/or forelimb dip is geometrically poss- 
ible with the constant-depth model (Fig. 4), allowing a 
wider variety of kinematic paths, yet self-similar (fixed 
backlimb and forelimb dip) fold growth is not (Fig. 5a). 
If the assumption of constant detachment depth is 
relaxed for detachment folds, as in our variable-depth 
model, an even wider array of kinematic paths is poss- 
ible, including fixed-hinge (Fig. 8) and self-similar (Fig. 
lob) fold growth, as well as a variety of paths that are 
geometrically possible but not kinematically or mechan- 
ically plausible. 

Fixed, competent footwall ramps account for migrat- 
ing hinges in the hangingwalls of ideal fault-bend and 
fault-propagation folds (Table 1). However, there is no 
rigid ‘footwall’ topography in a detachment fold, 
thereby precluding the geometric requirement of mi- 
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grating hinges. In fact, the inherent mobility of the 
incompetent unit in detachment folds suggests that a 
focus on the geometry of the competent unit may be the 
best approach to constraining the possible geometries 
and kinematic paths of detachment folds. Given the 
observational and theoretical evidence in support of 
fixed-hinge growth of buckle folds, it may well be that 
fixed hinges in the competent unit are the dominant 
control on the geometry and kinematic evolution of 
detachment folds. Under the assumptions of our 
models, such growth is possible only if incompetent unit 
thickness, and hence detachment depth, varies. 

Applicability of our models to natural detachment folds 

Our geometric models, in and of themselves, do not 
indicate the behavior of natural detachment folds. How- 
ever, they do provide a simple, mathematically con- 
strained basis to explore what is geometrically and 
kinematically possible given a well-defined set of start- 
ing assumptions. These conceptual models can be tested 
against natural detachment folds with well-constrained 
geometry and/or kinematic evolution in order to deter- 
mine which assumptions are valid for those folds, hope- 
fully leading to some general insights into the geometry 
and kinematics of natural detachment folds. However, 
the range of variability that the models demonstrate to 
be possible, coupled with the likelihood that some of the 
assumptions are not appropriate for natural detachment 
folds, indicates that caution should be used in applying 
these-or any other-simple, geometric models to the 
reconstruction of natural detachment folds whose geom- 
etry is not fully constrained by data. Specifically, a 
unique solution for detachment depth from fold geom- 
etry alone is possible only if constant detachment depth 
is assumed, and this assumption has been shown to be 
invalid for at least some natural detachment folds. While 
the variable-depth model allows determination of either 
original or final detachment depth if the other is known, 
it is only an approximation because it requires the 
geologically unreasonable assumption that no incompe- 
tent material is transported through the bounding syn- 
formal hinges of a detachment fold. 

The same basic technique upon which our models are 
based, line-length balancing of the competent unit and 
area balancing of the incompetent unit, can overcome 
some of the limitations of the geometric models if it is 
applied over a large enough area to account for complex 
flow of the incompetent unit. Specifically, balancing 
along a long enough line of section may account for flow 
through synclinal hinges and balancing of multiple sec- 
tions along strike may account for flow transverse to the 
line of section. Careful observations of mesoscopic and 
microscopic structures and strain measurements may be 
needed to validate mode1 assumptions and to correct for 
departures from those assumptions. These certainly are 
not new insights, and are routinely addressed in dis- 
cussions of cross-section balancing (e.g. Woodward et 
al. 1985, 1989). However, by demonstrating the sheer 
variability in possible detachment folds, our models 

illustrate the limits of simple geometric models in recon- 
structing detachment folds whose geometry and detach- 
ment depth are not fully constrained, particularly if it is 
not assumed that detachment depth remains constant. 
These points emphasize the importance of using addi- 
tional approaches in reconstructing detachment fold 
geometry, rather than relying on simple geometric 
models as heavily as may be possible with geometrically 
more constrained folds, such as fault-bend or fault- 
propagation folds. 

CONCLUSIONS 

We have presented two conceptual geometric models 
for idealized detachment folds that provide strict quanti- 
tative constraints on the fold geometry and kinematics 
possible given an explicit set of starting assumptions. 
The constant detachment depth model shows that 
growth of a detachment fold with constant detachment 
depth requires a linear increase in area with increasing 
shortening. This, in turn, precludes fixed-hinge (fixed 
arc-length) and self-similar (fixed limb-dip) fold growth, 
both of which require non-linear changes of area with 
increasing shortening. Fold growth along these kinema- 
tic paths, as well as others that are precluded by the 
constant detachment depth model, is possible if the 
assumption of constant detachment depth is relaxed, as 
in the variable detachment depth model. Both models 
require detachment folds to nucleate with symmetrical 
geometries or very high ratios of wavelength to height. 

Variable detachment depth, as determined by incom- 
petent unit thickness in synforms, has been observed in 
natural detachment folds, and fixed-hinge growth of 
buckle folds is supported by observational and theoreti- 
cal evidence. Together, these suggest that the variable- 
depth model is a better approximation for many natural 
detachment folds than any constant-depth model. 

The mobility of the incompetent unit in detachment 
folds makes these folds intrinsically less constrained 
than ideal fault-bend and fault-propagation folds, which 
have rigid footwall ramps. This intrinsic variability limits 
the usefulness of simple geometric models for recon- 
structing the geometry of natural detachment folds. This 
reinforces the importance of balancing over a sufficient- 
ly large area, across and along structural strike, to 
account for variations in detachment depth and of eva- 
luating strain to correct model assumptions. However, 
as has been shown here, geometric models are very 
useful to assess the geometric and kinematic impli- 
cations of specific assumptions, and can serve as a basis 
for testing the validity of those assumptions for natural 
detachment folds whose geometry is well constrained. 
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